MEGSOR iterative method for the triangle element solution of 2D Poisson equations
نویسندگان
چکیده
In previous studies of finite difference approaches, the 4 Point-Modified Explicit Group (MEG) iterative method with or without a weighted parameter, ω, has been pointed out to be much faster as compared to the existing four point block iterative methods. The main characteristic of the MEG iterative method is to reduce computational complexity compared to the full-sweep or half-sweep methods. Due to the effectiveness of this method, the primary goal of this paper is to demonstrate the use of the 4 PointModified Explicit Group (MEG) iterative method together with a weighted parameter, namely 4 Point-MEGSOR. The effectiveness of this method has been shown via results of numerical experiments, which are recorded and analyzed, show that that the 4 PointMEGSOR iterative scheme is superior as compared with the existing four point block schemes.
منابع مشابه
Red-Black Half-Sweep Iterative Method Using Triangle Finite Element Approximation for 2D Poisson Equations
This paper investigates the application of the Red-Black Half-Sweep Gauss-Seidel (HSGS-RB) method by using the half-sweep triangle finite element approximation equation based on the Galerkin scheme to solve two-dimensional Poisson equations. Formulations of the full-sweep and half-sweep triangle finite element approaches in using this scheme are also derived. Some numerical experiments are cond...
متن کاملMEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's
Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-E...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010